Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38367265

RESUMO

Ovarian cancer (OC) is one of the most prevalent malignancies in female reproductive organs, and its 5-year survival is below 45%. Despite the advances in surgical and chemotherapeutic options, OC treatment is still a challenge, and new anticancer agents are urgently needed. Drug repositioning has gained significant attention in drug discovery, representing a smart way to identify new clinical applications for drugs whose human safety and pharmacokinetics have already been established, with great time and cost savings in pharmaceutical development endeavors. This review offers an update on the most promising drugs repurposable for OC treatment and/or prevention.

2.
Biomedicines ; 11(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38002069

RESUMO

To Davide [...].

3.
ACS Med Chem Lett ; 14(7): 999-1008, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37465302

RESUMO

Several commercially available and newly synthesized riluzole analogs were evaluated in vitro as voltage-gated skeletal muscle sodium-channel blockers. Data obtained from the patch-clamp technique demonstrated that potency is well correlated with lipophilicity and the introduction of a protonatable amino function in the benzothiazole 2-position enhances the use-dependent behavior. The most interesting compound, the 2-piperazine analog of riluzole (14), although slightly less potent than the parent compound in the patch-clamp assay as well as in an in vitro model of myotonia, showed greater use-dependent Nav1.4 blocking activity. Docking studies allowed the identification of the key interactions that 14 makes with the amino acids of the local anesthetic binding site within the pore of the channel. The reported results pave the way for the identification of novel compounds useful in the treatment of cell excitability disorders.

4.
Arch Pharm (Weinheim) ; 356(10): e2300116, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37460390

RESUMO

Long QT syndrome (LQTS) is a disorder of cardiac electrophysiology resulting in life-threatening arrhythmias; nowadays, only a few drugs are available for the management of LQTS. Focusing our attention on LQT2, one of the most common subtypes of LQTS caused by mutations in the human ether-à-go-go-related gene (hERG), in the present work, the stereoselectivity of the recently discovered mexiletine-derived urea 8 was investigated on the hERG potassium channel. According to preliminary in silico predictions, in vitro studies revealed a stereoselective behavior, with the meso form showing the greatest hERG opening activity. In addition, functional studies on guinea pig isolated left atria, aorta, and ileum demonstrated that 8 does not present any cardiac or intestinal liability in our ex vivo studies. Due to its overall profile, (R,S)-8 paves the way for the design and development of a new series of compounds potentially useful in the treatment of both congenital and drug-induced forms of LQTS.


Assuntos
Síndrome do QT Longo , Mexiletina , Humanos , Animais , Cobaias , Mexiletina/farmacologia , Simulação de Acoplamento Molecular , Ureia , Relação Estrutura-Atividade , Canais de Potássio/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/terapia
5.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982749

RESUMO

Medicinal plants belonging to the genus Berberis may be considered an interesting source of drugs to counteract the problem of antimicrobial multiresistance. The important properties associated with this genus are mainly due to the presence of berberine, an alkaloid with a benzyltetrahydroisoquinoline structure. Berberine is active against both Gram-negative and Gram-positive bacteria, influencing DNA duplication, RNA transcription, protein synthesis, and the integrity of the cell surface structure. Countless studies have shown the enhancement of these beneficial effects following the synthesis of different berberine analogues. Recently, a possible interaction between berberine derivatives and the FtsZ protein was predicted through molecular docking simulations. FtsZ is a highly conserved protein essential for the first step of cell division in bacteria. The importance of FtsZ for the growth of numerous bacterial species and its high conservation make it a perfect candidate for the development of broad-spectrum inhibitors. In this work, we investigate the inhibition mechanisms of the recombinant FtsZ of Escherichia coli by different N-arylmethyl benzodioxolethylamines as berberine simplified analogues appropriately designed to evaluate the effect of structural changes on the interaction with the enzyme. All the compounds determine the inhibition of FtsZ GTPase activity by different mechanisms. The tertiary amine 1c proved to be the best competitive inhibitor, as it causes a remarkable increase in FtsZ Km (at 40 µM) and a drastic reduction in its assembly capabilities. Moreover, a fluorescence spectroscopic analysis carried out on 1c demonstrated its strong interaction with FtsZ (Kd = 26.6 nM). The in vitro results were in agreement with docking simulation studies.


Assuntos
Berberina , Proteínas do Citoesqueleto , Proteínas do Citoesqueleto/metabolismo , Simulação de Acoplamento Molecular , Berberina/química , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Recombinantes/metabolismo , Antibacterianos/farmacologia
6.
Mol Carcinog ; 62(5): 577-582, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36752344

RESUMO

Hepatocellular carcinoma (HCC) is one of the most worrying tumors worldwide today, and its epidemiology is on the rise. Traditional pharmacological approaches have shown unfavorable results and exhibited many side effects. Hence, there is a need for new efficacious molecules with fewer side effects and improvements on traditional approaches. We previously showed that lysophosphatidic acid (LPA) supports hepatocarcinogenesis, and its effects are mainly mediated by LPA receptor 6 (LPAR6). We also reported that 9-xanthylacetic acid (XAA) acts as an antagonist of LPAR6 to inhibit the growth of HCC. Here, we report that LPAR6 is involved in the choline-deficient l-amino acid-defined (CDAA) diet-induced hepatocarcinogenesis in mice. Our data demonstrate that CDAA diet-induced metabolic imbalance stimulates LPAR6 expression in mice and that XAA counteracts diet-induced effects on hepatic lipid accumulation, fibrosis, inflammation, and HCC development. These conclusions are corroborated by results on LPAR6 gain and loss-of-function in HCC cells.


Assuntos
Carcinoma Hepatocelular , Deficiência de Colina , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/prevenção & controle , Carcinoma Hepatocelular/metabolismo , Aminoácidos , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/prevenção & controle , Neoplasias Hepáticas/metabolismo , Colina/farmacologia , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Dieta/efeitos adversos , Carcinogênese/genética
7.
Biomedicines ; 11(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36831006

RESUMO

The endocannabinoid system (ECS) plays a very important role in numerous physiological and pharmacological processes, such as those related to the central nervous system (CNS), including learning, memory, emotional processing, as well pain control, inflammatory and immune response, and as a biomarker in certain psychiatric disorders. Unfortunately, the half-life of the natural ligands responsible for these effects is very short. This perspective describes the potential role of the inhibitors of the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL), which are mainly responsible for the degradation of endogenous ligands in psychic disorders and related pathologies. The examination was carried out considering both the impact that the classical exogenous ligands such as Δ9-tetrahydrocannabinol (THC) and (-)-trans-cannabidiol (CBD) have on the ECS and through an analysis focused on the possibility of predicting the potential toxicity of the inhibitors before they are subjected to clinical studies. In particular, cardiotoxicity (hERG liability), probably the worst early adverse reaction studied during clinical studies focused on acute toxicity, was predicted, and some of the most used and robust metrics available were considered to select which of the analyzed compounds could be repositioned as possible oral antipsychotics.

8.
Biochem Pharmacol ; 208: 115405, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603686

RESUMO

Mitochondria and mitochondrial proteins represent a group of promising pharmacological target candidates in the search of new molecular targets and drugs to counteract the onset of hypertension and more in general cardiovascular diseases (CVDs). Indeed, several mitochondrial pathways result impaired in CVDs, showing ATP depletion and ROS production as common traits of cardiac tissue degeneration. Thus, targeting mitochondrial dysfunction in cardiomyocytes can represent a successful strategy to prevent heart failure. In this context, the identification of new pharmacological targets among mitochondrial proteins paves the way for the design of new selective drugs. Thanks to the advances in omics approaches, to a greater availability of mitochondrial crystallized protein structures and to the development of new computational approaches for protein 3D-modelling and drug design, it is now possible to investigate in detail impaired mitochondrial pathways in CVDs. Furthermore, it is possible to design new powerful drugs able to hit the selected pharmacological targets in a highly selective way to rescue mitochondrial dysfunction and prevent cardiac tissue degeneration. The role of mitochondrial dysfunction in the onset of CVDs appears increasingly evident, as reflected by the impairment of proteins involved in lipid peroxidation, mitochondrial dynamics, respiratory chain complexes, and membrane polarization maintenance in CVD patients. Conversely, little is known about proteins responsible for the cross-talk between mitochondria and cytoplasm in cardiomyocytes. Mitochondrial transporters of the SLC25A family, in particular, are responsible for the translocation of nucleotides (e.g., ATP), amino acids (e.g., aspartate, glutamate, ornithine), organic acids (e.g. malate and 2-oxoglutarate), and other cofactors (e.g., inorganic phosphate, NAD+, FAD, carnitine, CoA derivatives) between the mitochondrial and cytosolic compartments. Thus, mitochondrial transporters play a key role in the mitochondria-cytosol cross-talk by leading metabolic pathways such as the malate/aspartate shuttle, the carnitine shuttle, the ATP export from mitochondria, and the regulation of permeability transition pore opening. Since all these pathways are crucial for maintaining healthy cardiomyocytes, mitochondrial carriers emerge as an interesting class of new possible pharmacological targets for CVD treatments.


Assuntos
Doenças Cardiovasculares , Hipertensão , Traumatismo por Reperfusão , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Malatos/metabolismo , Ácido Aspártico/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Hipertensão/metabolismo , Proteínas Mitocondriais/metabolismo , Traumatismo por Reperfusão/metabolismo , Trifosfato de Adenosina/metabolismo
9.
Molecules ; 28(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36615566

RESUMO

The urgent need to increase the sustainability of crop production has pushed the agricultural sector towards the use of biostimulants based on natural products. The current work aimed to determine whether the preharvest application of two commercial formulations, based on a Fabaceae enzymatic hydrolysate or a blend of nitrogen sources including fulvic acids, and two lab-made aqueous extracts from Moringa oleifera leaves (MLEs), could improve yield, quality, and storability of lettuce grown in a hydroponic system, as compared to an untreated control. Lettuce plants treated with the MLEs showed significantly improved quality parameters (leaf number, area, and color), total phenolic content and antioxidant activity, and resistance against the fungal pathogen Botrytis cinerea, comparable to that obtained with commercial formulates, particularly those based on the protein hydrolysate. A difference between the M. oleifera extracts was observed, probably due to the different compositions. Although further large-scale trials are needed, the tested MLEs seem a promising safe and effective preharvest means to improve lettuce agronomic and quality parameters and decrease susceptibility to rots.


Assuntos
Moringa oleifera , Hidroponia , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Folhas de Planta
10.
Nat Cardiovasc Res ; 2(12): 1291-1309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665938

RESUMO

Timothy syndrome 1 (TS1) is a multi-organ form of long QT syndrome associated with life-threatening cardiac arrhythmias, the organ-level dynamics of which remain unclear. In this study, we developed and characterized a novel porcine model of TS1 carrying the causative p.Gly406Arg mutation in CACNA1C, known to impair CaV1.2 channel inactivation. Our model fully recapitulated the human disease with prolonged QT interval and arrhythmic mortality. Electroanatomical mapping revealed the presence of a functional substrate vulnerable to reentry, stemming from an unforeseen constitutional slowing of cardiac activation. This signature substrate of TS1 was reliably identified using the reentry vulnerability index, which, we further demonstrate, can be used as a benchmark for assessing treatment efficacy, as shown by testing of multiple clinical and preclinical anti-arrhythmic compounds. Notably, in vitro experiments showed that TS1 cardiomyocytes display Ca2+ overload and decreased peak INa current, providing a rationale for the arrhythmogenic slowing of impulse propagation in vivo.

11.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499353

RESUMO

Up to the present day, studies on the therapeutic properties of camel (Camelus spp.) urine and the detailed characterization of its metabolomic profile are scarce and often unrelated. Information on inter individual variability is noticeably limited, and there is a wide divergence across studies regarding the methods for sample storage, pre-processing, and extract derivatization for metabolomic analysis. Additionally, medium osmolarity is not experimentally adjusted prior to bioactivity assays. In this scenario, the methodological standardization and interdisciplinary approach of such processes will strengthen the interpretation, repeatability, and replicability of the empirical results on the compounds with bioactive properties present in camel urine. Furthermore, sample enlargement would also permit the evaluation of camel urine's intra- and interindividual variability in terms of chemical composition, bioactive effects, and efficacy, while it may also permit researchers to discriminate potential animal-intrinsic and extrinsic conditioning factors. Altogether, the results would help to evaluate the role of camel urine as a natural source for the identification and extraction of specific novel bioactive substances that may deserve isolated chemical and pharmacognostic investigations through preclinical tests to determine their biological activity and the suitability of their safety profile for their potential inclusion in therapeutic formulas for improving human and animal health.


Assuntos
Líquidos Corporais , Camelus , Animais , Humanos
13.
Molecules ; 27(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36364300

RESUMO

The recovery of industrial by-products is part of the zero-waste circular economy. Lentil seed coats are generally considered to be a waste by-product. However, this low-value by-product is rich in bioactive compounds and may be considered an eco-friendly source of health-promoting phytochemicals. For the first time, a sustainable microwave-assisted extraction technique was applied, and a solvent screening was carried out to enhance the bioactive compound content and the antioxidant activity of green and red lentil hull extracts. With respect to green lentil hull extracts that were obtained with different solvents, the aqueous extract of the red lentil seed coats showed the highest total phenolic and total flavonoid content (TPC = 28.3 ± 0.1 mg GAE/g dry weight, TFC = 1.89 ± 0.01 mg CE/100 mg dry weight, respectively), as well as the highest antioxidant activity, both in terms of the free radical scavenging activity (ABTS, 39.06 ± 0.73 mg TE/g dry weight; DPPH, IC50 = 0.39 µg/mL) and the protection of the neuroblastoma cell line (SH-SY5Y, IC50 = 10.1 ± 0.6 µg/mL), the latter of which has never been investigated so far. Furthermore, a metabolite discovery analysis was for the first time performed on the aqueous extracts of both cultivars using an HPLC separation which was coupled with an Orbitrap-based high-Resolution Mass Spectrometry technique.


Assuntos
Lens (Planta) , Neuroblastoma , Humanos , Antioxidantes/química , Micro-Ondas , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Solventes/química
14.
Molecules ; 27(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431971

RESUMO

In a previous paper, we demonstrated the synergistic action of the anti-ischemic lubeluzole (Lube S) on the cytotoxic activity of doxorubicin (Dox) and paclitaxel in human ovarian cancer A2780 and lung cancer A549 cells. In the present paper, we extended in vitro the study to the multi-drug-resistant A2780/DX3 cell line to verify the hypothesis that the Dox and Lube S drug association may potentiate the antitumor activity of this anticancer compound also in the context of drug resistance. We also evaluated some possible mechanisms underlying this activity. We analyzed the antiproliferative activity in different cancer cell lines. Furthermore, apoptosis, Dox accumulation, MDR1 downregulation, ROS, and NO production in A2780/DX3 cells were also evaluated. Our results confirm that Lube S improves Dox antiproliferative and apoptotic activities through different mechanisms of action, all of which may contribute to the final antitumor effect. Moderate stereoselectivity was found, with Lube S significantly more effective than its enantiomer (Lube R) and the corresponding racemate (Lube S/R). Docking simulation studies on the ABCB1 Cryo-EM structure supported the hypothesis that Lube S forms a stable MDR1-Dox-Lube S complex, which hampers the protein transmembrane domain flipping and blocks the efflux of Dox from resistant A2780/DX3 cells. In conclusion, our in vitro studies reinforce our previous hypothesis for repositioning the anti-ischemic Lube S as a potentiating agent in anticancer chemotherapy.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Carcinoma Epitelial do Ovário/tratamento farmacológico , Piperidinas/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico
15.
Biochimie ; 202: 180-189, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35952946

RESUMO

Hepatocellular carcinoma (HCC) is one of the most threatening tumours in the world today. Pharmacological treatments for HCC mainly rely on protein kinase inhibitors, such as sorafenib and regorafenib. Even so, these approaches exhibit side effects and acquired drug resistance, which is an obstacle to HCC treatment. We have previously shown that selective lysophosphatidic acid receptor 6 (LPAR6) chemical antagonists inhibit HCC growth. Here, we investigated whether LPAR6 mediates resistance to sorafenib by affecting energy metabolism in HCC. To uncover the role of LPAR6 in drug resistance and cancer energy metabolism, we used a gain-of-function and loss-of-function approach in 2D tissue and 3D spheroids. LPAR6 was ectopically expressed in HLE cells (HLE-LPAR6) and knocked down in HepG2 (HepG2 LPAR6-shRNA). Measurements of oxygen consumption and lactate and pyruvate production were performed to assess the energy metabolism response of HCC cells to sorafenib treatment. We found that LPAR6 mediates the resistance of HCC cells to sorafenib by promoting lactic acid fermentation at the expense of oxidative phosphorylation (OXPHOS) and that the selective LPAR6 antagonist 9-xanthenyl acetate (XAA) can effectively overcome this resistance. Our study shows for the first time that an LPAR6-mediated metabolic mechanism supports sorafenib resistance in HCC and proposes a pharmacological approach to overcome it.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenibe/farmacologia , Fosforilação Oxidativa , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Glicólise , Ácido Láctico , Ácido Pirúvico , Receptores de Ácidos Lisofosfatídicos
16.
Molecules ; 27(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35684429

RESUMO

Mitochondrial diseases (MDs) may result from mutations affecting nuclear or mitochondrial genes, encoding mitochondrial proteins, or non-protein-coding mitochondrial RNA. Despite the great variability of affected genes, in the most severe cases, a neuromuscular and neurodegenerative phenotype is observed, and no specific therapy exists for a complete recovery from the disease. The most used treatments are symptomatic and based on the administration of antioxidant cocktails combined with antiepileptic/antipsychotic drugs and supportive therapy for multiorgan involvement. Nevertheless, the real utility of antioxidant cocktail treatments for patients affected by MDs still needs to be scientifically demonstrated. Unfortunately, clinical trials for antioxidant therapies using α-tocopherol, ascorbate, glutathione, riboflavin, niacin, acetyl-carnitine and coenzyme Q have met a limited success. Indeed, it would be expected that the employed antioxidants can only be effective if they are able to target the specific mechanism, i.e., involving the central and peripheral nervous system, responsible for the clinical manifestations of the disease. Noteworthily, very often the phenotypes characterizing MD patients are associated with mutations in proteins whose function does not depend on specific cofactors. Conversely, the administration of the antioxidant cocktails might determine the suppression of endogenous oxidants resulting in deleterious effects on cell viability and/or toxicity for patients. In order to avoid toxicity effects and before administering the antioxidant therapy, it might be useful to ascertain the blood serum levels of antioxidants and cofactors to be administered in MD patients. It would be also worthwhile to check the localization of mutations affecting proteins whose function should depend (less or more directly) on the cofactors to be administered, for estimating the real need and predicting the success of the proposed cofactor/antioxidant-based therapy.


Assuntos
Antioxidantes , Doenças Mitocondriais , Medicina de Precisão , Anticonvulsivantes/uso terapêutico , Antioxidantes/uso terapêutico , DNA Mitocondrial/genética , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/tratamento farmacológico , Proteínas Mitocondriais/metabolismo
18.
Pharmaceutics ; 13(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34575589

RESUMO

The novel human coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has caused a pandemic. There are currently several marketed vaccines and many in clinical trials targeting SARS-CoV-2. Another strategy is to repurpose approved drugs to decrease the burden of the COVID-19 (official name for the coronavirus disease) pandemic. as the FDA (U.S. Food and Drug Administration) approved antiviral drugs and anti-inflammatory drugs to arrest the cytokine storm, inducing the production of pro-inflammatory cytokines. Another view to solve these unprecedented challenges is to analyze the diverse nanotechnological approaches which are able to improve the COVID-19 pandemic. In this original minireview, as promising candidates we analyze the opportunity to develop biocompatible dendrimers as drugs themselves or as nanocarriers against COVID-19 disease. From the standpoint of COVID-19, we suggest developing dendrimers as shields against COVID-19 infection based on their capacity to be incorporated in several environments outside the patients and as important means to stop transmission of SARS-CoV-2.

19.
J Chem Inf Model ; 61(9): 4758-4770, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34506150

RESUMO

Drug-induced blockade of the human ether-à-go-go-related gene (hERG) channel is today considered the main cause of cardiotoxicity in postmarketing surveillance. Hence, several ligand-based approaches were developed in the last years and are currently employed in the early stages of a drug discovery process for in silico cardiac safety assessment of drug candidates. Herein, we present the first structure-based classifiers able to discern hERG binders from nonbinders. LASSO regularized support vector machines were applied to integrate docking scores and protein-ligand interaction fingerprints. A total of 396 models were trained and validated based on: (i) high-quality experimental bioactivity information returned by 8337 curated compounds extracted from ChEMBL (version 25) and (ii) structural predictor data. Molecular docking simulations were performed using GLIDE and GOLD software programs and four different hERG structural models, namely, the recently published structures obtained by cryoelectron microscopy (PDB codes: 5VA1 and 7CN1) and two published homology models selected for comparison. Interestingly, some classifiers return performances comparable to ligand-based models in terms of area under the ROC curve (AUCMAX = 0.86 ± 0.01) and negative predictive values (NPVMAX = 0.81 ± 0.01), thus putting forward the herein proposed computational workflow as a valuable tool for predicting hERG-related cardiotoxicity without the limitations of ligand-based models, typically affected by low interpretability and a limited applicability domain. From a methodological point of view, our study represents the first example of a successful integration of docking scores and protein-ligand interaction fingerprints (IFs) through a support vector machine (SVM) LASSO regularized strategy. Finally, the study highlights the importance of using hERG structural models accounting for ligand-induced fit effects and allowed us to select the best-performing protein conformation (made available in the Supporting Information, SI) to be employed for a reliable structure-based prediction of hERG-related cardiotoxicity.


Assuntos
Canais de Potássio Éter-A-Go-Go , Bloqueadores dos Canais de Potássio , Benchmarking , Microscopia Crioeletrônica , Humanos , Simulação de Acoplamento Molecular
20.
ChemMedChem ; 16(23): 3588-3599, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34519427

RESUMO

Three analogues of To042, a tocainide-related lead compound recently reported for the treatment of myotonia, were synthesized and evaluated in vitro as skeletal muscle sodium channel blockers possibly endowed with enhanced use-dependent behavior. Patch-clamp experiments on hNav1.4 expressed in HEK293 cells showed that N-[(naphthalen-1-yl)methyl]-4-[(2,6-dimethyl)phenoxy]butan-2-amine, the aryloxyalkyl bioisostere of To042, exerted a higher use-dependent block than To042 thus being able to preferentially block the channels in over-excited membranes while preserving healthy tissue function. It also showed the lowest active transport across BBB according to the results of P-glycoprotein (P-gp) interacting activity evaluation and the highest cytoprotective effect on HeLa cells. Quantum mechanical calculations and dockings gave insights on the most probable conformation of the aryloxyalkyl bioisostere of To042 in solution and the target residues involved in the binding, respectively. Both approaches indicated the conformations that might be adopted in both the unbound and bound state of the ligand. Overall, N-[(naphthalen-1-yl)methyl]-4-[(2,6-dimethyl)phenoxy]butan-2-amine exhibits an interesting toxico-pharmacological profile and deserves further investigation.


Assuntos
Butilaminas/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Éteres Fenílicos/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Antioxidantes/síntese química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/toxicidade , Butilaminas/síntese química , Butilaminas/metabolismo , Butilaminas/toxicidade , Células HEK293 , Células HeLa , Humanos , Mexiletina/farmacologia , Simulação de Acoplamento Molecular , Éteres Fenílicos/síntese química , Éteres Fenílicos/metabolismo , Éteres Fenílicos/toxicidade , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/síntese química , Bloqueadores do Canal de Sódio Disparado por Voltagem/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...